

HEALTH ECONOMICS RESEARCH UNIT

Promoting Excellence in Health Economics

FOCCUS trial: Pre-operative fluid loading for high risk patients undergoing major elective surgery: A cost-effectiveness analysis

Boyers D¹, Hernández R^{1,2}, Vale L^{1,2}, Elders A², Cuthbertson B². (PI)

8th HTAi Annual Meeting 28th June, 2011, Rio De Janeiro

1 Health Economics Research Unit (HERU); 2 Health Services Research Unit (HSRU), University of Aberdeen, Aberdeen, Scotland, U.K.

The FOCCUS trial - background

- Patients undergoing major surgery are at significant risk of death or major morbidity
- Pre-operative optimisation is a complex intervention involving pre-operative fluid loading in an Intensive Care Unit (ICU), optimisation of oxygen delivery using inotropes as well as post-operative ICU admission
- Poor penetration into clinical practice
- low levels of implementation in most countries.

Trial design

- Multi-centred pragmatic randomised controlled trial
 - 3 centres in Scotland randomised patients
 - One of only a few surgical trials to incorporate economic evaluation at the time of start-up.
- Original 2*2 factorial design
 - (1) HDU vs. ICU
 - Difficulties with randomisation
 - Comparison abandoned small number randomised
 - (2) Fluid vs. No fluid

Intervention

- ward-based pre-operative fluid loading
- pre-operative fluid therapy (25ml/kg) in the ward using Hartmann's solution
- Administered over 6 hours prior to surgery
- Patients receiving bowel preparation received an additional 10ml/kg Hartmann's solution (12 hours before surgery) irrespective of trial group allocation - best clinical practice

Objective

Clinical

 To determine if pre-operative fluid loading in the 6 hours before surgery significantly reduced hospital length of stay

Health economic

 Cost-effectiveness of the fluid loading intervention measured as cost (£Sterling) per quality adjusted life year (QALY) gained.

Cost-effectiveness methods (Costs)

- Intervention costs:
 - Time of HCPs to deliver intervention and monitor patient, fluid costs
- Costs of health care resource use:
 - Secondary
 - Time in theatre, time in recovery (ICU / HDU), time on ward, subsequent hospital admissions, outpatient clinics
 - Primary
 - GP visits, Nurse consultations, contacts with other health care professionals
 - Prescribed medications
- Out of pocket costs to patient
 - Private health care, insurance costs, out of pocket expenses

Cost-effectiveness methods (Effects)

- EQ-5D, population tariffs for the UK, (Dolan, 1996)
 - Collected at 48 hours, 1 month, 3 months and 6 months follow up
- Utility scores weighted for the length of time in each reported health state
- assume linear extrapolation between time points
- QALYs generated using area under the curve methodology
- No extrapolation of benefit beyond 6 months follow up

Cost-effectiveness methods (Analysis)

- Mean cost and QALY differences between both arms of the trial
 - Adjusted for covariates of age, sex, centre where procedure administered, level of severity of heart disease, base line EQ-5D score
- Results reported as Incremental costs per QALY gained (ICER)

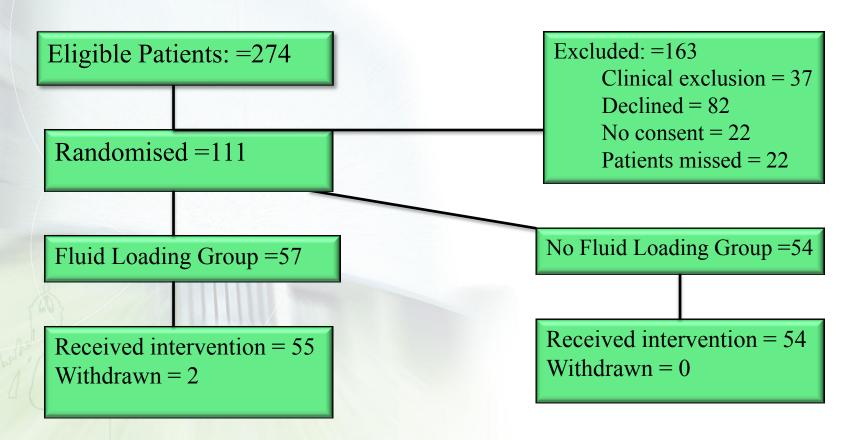
Sensitivity Analysis

Deterministic:

- Imputation method for missing data (e.g. MI using ICE)
- Base line EQ-5D score (e.g. EQ-5D unconscious state (-0.402))
- Distribution of costs (e.g. gamma distribution)
- Outlying cost and QALY data (e.g. 5% high and low cost outliers)
- High intervention cost scenario (worst case scenario)
- Low intervention cost scenario (best case scenario)
- Stochastic: (e.g. bootstrapped 1000 iterations, CEACs)

Cost-effectiveness methods (missing data)

- Substantial problem in many trials collecting patient reported outcomes
 - However for FOCCUS, missing data evenly distributed across groups
 - Assume data were missing completely at random (MCAR)
 - Sensitivity analysis used multiple imputation based on iterative chained equations (m=5 data points imputed)
- Other imputations:
 - If patient has died (EQ-5D = 0)
 - Practical assumptions based on patient reported resource use.



Randomisation

Promoting Excellence in Health Economics

Missing Data

- Full EQ-5D data existed for 64/109 participants (59%) with no participants missing all of their data.
- 72/109 (66%) of patient questionnaires returned

HERU HEALTH ECONOMICS RESEARCH UNIT

Mean Costs

Promoting Excellence in Health Economics

	Mea cost per l	Mean cost diff. (95% CI) [p Value]		
	Fluid group (N=55)	No fluid loading (N=54)		
Intervention	51(0)	0(0)	51 (51 – 51)	
Total inpatient length of stay	7,273 (9,478)	9,585 (10,688)	-2,988 (-7,300 to 1,324) p = 0.174	
Total subsequent admissions	2,270 (6,787)	1,600 (3,221)	643 (-1,176 to 2,462) P = 0.488	
Total outpatient visits	313 (400)	252 (258)	64 (-61 to 190) P = 0.317	
Total primary care visits	303 (824)	162 (312)	133 (-96 to 363) P = 0.254	
Medications	163 (240)	140 (197)	50 (-30 to 130) P = 0.218	
Overall Total Cost of health care resources	10,373 (12,860)	11,739 (11,438)	-2,047 (-6,947 to 2,854) P = 0.254	

Mean QALY outcomes

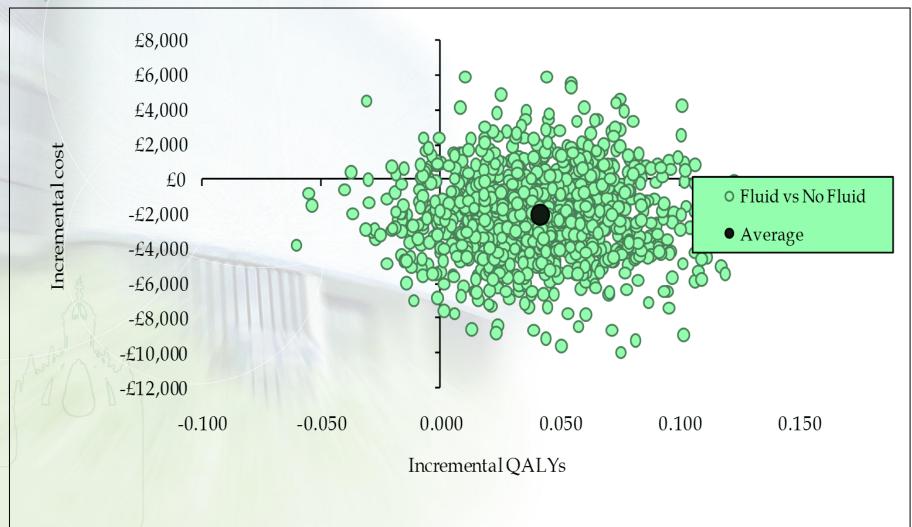
		Fluid		No Fluid		
EQ-5D	N	Mean (SD)	N	Mean (SD)		
EQ5D Base line	55	0.71 (0.34)	53	0.75 (0.30)		
EQ5D 48 hours	50	0.16 (0.33)	49	0.28 (0.38)		
EQ5D 1 month	48	0.65 (0.32)	45	0.59 (0.29)		
EQ5D 3 months	45	0.74 (0.26)	46	0.67 (0.32)		
EQ5D 6 months	40	0.76 (0.27)	38	0.73 (0.29)		
Mean Total QALY	34	0.3527	30	0.3175		
Wedir Total QALI		(64.37 Days)	30	(57.94 Days)		
Mean QALY Difference		0.0431 QALY				
[Bootstrapped 95%CI]*	[-0.0171 to 0.1033]; p=0.161);					

Cost-effectiveness results – Base case

Base case ICER calculations

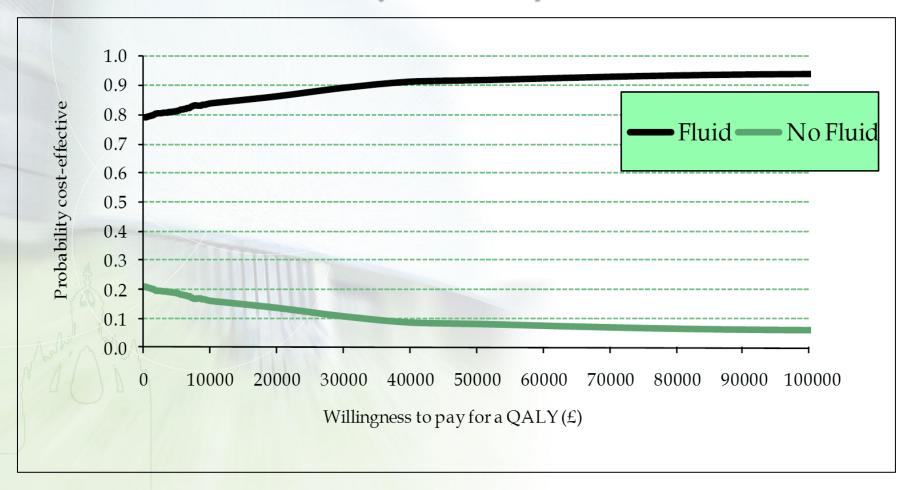
Threshold analysis*: probability of cost-effective at alternative values of willingness to pay for a QALY (%)

	Mean cost (£)	Inc. Cost (£)*	Mean QALY	Inc. QALY*	ICER (£/QALY)	£10k	£20k	£30k	£50k
No Fluid loading	11,739		0.3175			15.6	13.5	10.6	8.0
Fluid loading	10,373	-2,047	0.3527	0.0431	Dominant	84.4	86.5	89.4	92.0



Scatter plot of bootstrapped estimates

Promoting Excellence in Health Economics



Cost-effectiveness acceptability curve

Conclusion

- Observations and comments on results:
 - Fluid loading is on average less costly and more effective (QALYs)
 than no fluid loading
 - Additional intervention costs are offset by cost savings from reduced hospital length of stay
 - Fluid loading is highly likely to be cost-effective compared with an alternative of no fluid loading as part of routine clinical care
- Should our results be reproducible in a larger scale trial, then
 pre-operative fluid loading should be adopted as standard
 surgical practice through out the UK and further afield.

Further work

- We have some data relating to ICU / HDU comparison randomisation.
- No such data is available anywhere else and would be useful to publish in order to inform future economic modelling and evaluation methods.

Thank you

Please let me know of any comments of queries you may have.

www.abdn.ac.uk/heru

or

d.boyers@abdn.ac.uk

